The Hidden Gem Of Deepseek Chatgpt
페이지 정보
Jacques 작성일25-02-04 10:01본문
‘장기적인 관점에서 현재의 생성형 AI 기술을 바탕으로 AGI로 가는 길을 찾아보겠다’는 꿈이 엿보이는 듯합니다. 시장의 규모, 경제적/산업적 환경, 정치적 안정성 측면에서 우리나라와는 많은 차이가 있기는 하지만, 과연 우리나라의 생성형 AI 생태계가 어떤 도전을 해야 할지에 대한 하나의 시금석이 될 수도 있다고 생각합니다. DeepSeek 모델은 처음 2023년 하반기에 출시된 후에 빠르게 AI 커뮤니티의 많은 관심을 받으면서 유명세를 탄 편이라고 할 수 있는데요. 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다. 특히 DeepSeek-V2는 더 적은 메모리를 사용하면서도 더 빠르게 정보를 처리하는 또 하나의 혁신적 기법, MLA (Multi-Head Latent Attention)을 도입했습니다. DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠. 트랜스포머에서는 ‘어텐션 메커니즘’을 사용해서 모델이 입력 텍스트에서 가장 ‘유의미한’ - 관련성이 높은 - 부분에 집중할 수 있게 하죠.
특히, DeepSeek만의 혁신적인 MoE 기법, 그리고 MLA (Multi-Head Latent Attention) 구조를 통해서 높은 성능과 효율을 동시에 잡아, 향후 주시할 만한 AI 모델 개발의 사례로 인식되고 있습니다. Besides, the model uses some new strategies such as Multi-Head Latent Attention (MLA) and an auxiliary-loss-free load balancing technique to reinforce effectivity and minimize costs for training and deployment. As talked about above, the DeepSeek-V3 makes use of MLA for optimal reminiscence utilization and inference performance. Moreover, DeepSeek-V3 can process as much as 128,000 tokens in a single context, and this lengthy-context understanding offers it a aggressive edge in areas like legal document overview and educational analysis. Huawei will now be limited to the logic chips that its home logic chip manufacturing associate, SMIC, can produce, in addition to either legally acquired HBM2 or smuggled provides of HBM3e. The slowing sales of H20s appeared to recommend that native opponents were turning into more engaging than Nvidia’s degraded chips for the Chinese market. The manneqg of language and activity-specific capabilities. These models are not simply extra environment friendly-they are also paving the way for broader AI adoption across industries. This mixture permits DeepSeek-V2.5 to cater to a broader viewers whereas delivering enhanced performance throughout varied use cases. DeepSeek-V2.5 builds on the success of its predecessors by integrating one of the best features of DeepSeekV2-Chat, which was optimized for conversational tasks, and DeepSeek-Coder-V2-Instruct, identified for its prowess in generating and understanding code. This means the model has been optimized to observe directions extra precisely and provide more relevant and coherent responses. Similarly, in the HumanEval Python test, the mannequin improved its score from 84.5 to 89. These metrics are a testomony to the significant advancements in general-goal reasoning, coding abilities, and human-aligned responses. In essence, MoE models are like a crew of specialist models working collectively to answer a query. In the case of mathematics and coding, the mannequin outperformed its competitors in benchmarks like MATH-500 and LiveCodeBench. The addition of the model comes at the same time as DeepSeek's being scrutinized for the way it educated its models.
If you cherished this article and you would like to get more details relating to deep seek kindly take a look at the site.
댓글목록
등록된 댓글이 없습니다.